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Abstract. A simple dielectric relaxation relationship,ε′′ = A0e−ω/ω0ε′′glass+ ε′′Debye, describes
the high- and low-frequency dielectric relaxation in PMN–PT relaxor ferroelectrics. It fits the
experimental data closely. Debye relaxation arises from superparaelectric clusters; the correlation
of clusters leads to dipole-induced regions, which give rise to the glassy behaviour of the system.
Their relationship and the changes that they undergo with changing temperature are discussed.

Lead magnesium niobate (PMN) is the classic relaxor ferroelectric. It easily forms a solid
solution with lead titanate (PT), and the relaxor behaviour persists up to the morphotropic
phase boundary for a composition containing 40 at.% PT [1]. Relaxor ferroelectrics are
characterized by diffuse phase transitions (DPT). Research into relaxation characteristics is
believed to have provided a basic physical understanding of ferroelectrics exhibiting DPT
[2]. The obvious feature of their relaxation is that at high and low frequency they show
different relaxation behaviours. The high-frequency behaviour is typical Debye relaxation
(DR). The low-frequency behaviour shows a wide spectrum of relaxation times; it has been
suggested that this is polar glassy relaxation (GR) [3]. Using DR to analyse the low-
frequency data [4, 5] would not give a meaningful result, because the broad distribution
of relaxation times is simplified as simple deviation from DR. GR with a broad spectrum
of relaxation times cannot be fitted to the high-frequency DR [6]. Researchers have had
to study them separately. This cannot provide an entirely clear description, and does not
give the relationship of the various processes and regions. In this letter, we try to improve
on this situation. We will suggest a simple dielectric relaxation relationship, which agrees
closely with the high- and low-frequency experimental data.

The samples used in this study were PMN ceramics containing 20 at.% PT (PMN–
20PT). They were prepared by a sol–gel technique [7]. Disks were pressed from PMN–20PT
powders under a pressure of 100 MPa, and then sintered at 1000◦C for 1 h, to produce dense
PMN–20PT ceramics. Figure 1 shows the real part of the dielectric constant(ε′) for the
PMN–20PT ceramics; this was measured using an HP4192A LCR. These curves demonstrate
typical relaxor behaviour, with the magnitude of the dielectric constant decreasing with
increasing frequency and the maximum shifting to higher temperature. Figure 2 shows the
frequency dependence of the imaginary part of the dielectric constant(ε′′) measured over
the frequency range 102–107 Hz at the Curie temperatureTm = 378 K.

In an ideal Debye medium, the dipoles are free to rotate individually, and there is no
interaction between them. A modified Debye relationship has been proposed for a relaxor
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Figure 1. The real part of the dielectric constant(ε′) as a function of temperature for
measurement frequencies of 0.1, 1, 10 and 100 kHz.

Figure 2. The frequency dependence of the imaginary part of the dielectric constant(ε′′) at
Tm = 378 K (open circles: experimental data; dotted line: the curve calculated from the DR;
dashed line: the curve calculated from the GR, equation (6); solid line: the curve calculated
from the new relationship, equation (7)).

with more realistic dipoles [8]:

ε∗(ω) = ε′(ω)− iε′′(ω) = ε∞ + εs − ε∞
1+ (iωτ0)(1−h)

(1)

whereε∞ is the high-frequency value of the dielectric constant andεs its low-frequency
limit. The parameterh indicates the degree of deviation from the standard Debye relation,
and 06 h 6 1. Whenh = 0 it becomes the standard Debye relation.τ0 is the most
probable relaxation time. The dotted line in figure 2 shows the curve calculated from the
Debye relation, equation (1). In the high-frequency region, it closely fits the experimental
data.
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Now, let us consider the relaxation in between the measured dielectric response and
the dielectric relaxation spectrum. The dielectric constant could be represented as a
superposition of Debye relaxors with different relaxation timesτ , and the probability
distributionG(τ, T ) of relaxation times can be supposed to be slowly varying in lnτ [9–11]:

ε(T ) = ε0(T )

∫ ∞
0

d(ln τ)

1− iωτ
G(τ, T ) (2)

whereε0(T ) is the very-low-frequency limit ofε. Consequently, the imaginary part,ε′′,
can be written as

ε′′ = ε0(T )

∫ ∞
0
G(τ, T )

d(ωτ)

1+ ω2τ 2
(3)

for the case of a broad spectrum, when

τmin 6 1/ω 6 τmax (4)

For a broad spectrumG(τ, T ), the important contribution to the integral comes from the
region whereωτ = 1 (τ = 1/ω) [10, 11]. ε′′ can then be approximately represented as

ε′′(ω, T ) ∼= (π/2)ε0(T )G(1/ω, T ). (5)

Thus, the dielectric loss spectrum gives direct information about the distribution of relaxation
timesG(τ, T ). At the same time, one can also obtain an important relationship between
the real and imaginary parts of the dielectric constant under the condition that the spectrum
is broad [12]:

ε′′ = (−π/2) ∂ε′(ω)/∂(lnω). (6)

This relationship has been proved to be a fundamental characteristic of glassy states that
have a broad spectrum of relaxation times [6, 10, 11].

The dashed line in figure 2 shows the result calculated from equation (6). Obviously,
it agrees closely with the low-frequency data, but does not fit the high-frequency results
which manifest DR with a narrow spectrum of relaxation times. Similar results were given
in [6].

Here we give a new relationship, which describes the low- and high-frequency relaxation
completely:

ε′′ = A0e−ω/ω0

(
−π

2

)
∂ε′(ω)/∂(lnω)+ (εs − ε∞) (ωτ0)

1−h cos([π/2]h)

1+ 2(ωτ0)1−h sin([π/2]h)+ (ωτ0)2(1−h)

(7)

where the second term is theε′′-expression from the modified Debye relationship (equation
(1)). We recast equation (7) as a simple expression:

ε′′ = A0e−ω/ω0ε′′glass+ ε′′Debye (8)

whereA0 andω0 are constants. This relationship shows the GR behaviour decreasing with
increasing frequency in an exponential decay. When the frequency reachesω0, the glassy
behaviour has almost disappeared, and the DR behaviour begins to take the main role.ω0

is the rate of exponential decay, or it can be described as the high-frequency limit for glassy
behaviour in a relaxor ferroelectric system. The solid line calculated from equation (7)
shown in figure 2 shows close agreement with the experimental data (open circles). The
Argand (Cole–Cole) diagram for PMN–20PT is given forT = 378 K (figure 3), where the
parameters areA0 = 1.074,ω0 = 360 436 Hz,h = 0.007,τ0 = 2.1×10−7 s,ε∞ = 21 982.9,
εs = 171.6.



L300 Letter to the Editor

Figure 3. The Argand diagram forT = 378 K (open circles: experimental data; dotted line:
the Cole–Cole circle calculated from the DR; solid line: the curve calculated from the new
relationship, equation (7)).

Figure 4. The distribution functiong(τ) of GR times forT = 378 K.

Viehland et al [13, 14] gave a distribution of relaxation timesG(τ, T ) of the global
effect of ε′′ calculated according to equation (5). But the influence of the relatively sharp
distribution of DR times makes equation (5) unreliable. Here we discuss the polar glassy
state of the low-frequency range, including its exponential decay factor, of course (we use
the notationg(τ, T ) in order to distinguish this distribution from the global distribution
G(τ, T ) of the GR and DR times):

ε′′ = A0e−ω/ω0

(
−π

2

)
∂ε′(ω)/∂(lnω) ∼=

(
π

2

)
ε0(T )g(1/ω, T ). (9)

The isothermal cross section ofg(1/ω) as a function ofω for PMN–20PT is shown in
figure 4 for the temperatureT = 378 K. ε0(T ) is the value ofε′(ω, T ) when the frequency
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Figure 5. The distribution functiong(τ, T ) of GR times as a function of the relaxation times
τ = 1/ω and temperatureT near the Curie temperatureTm.

ω takes the lowest value, 100 Hz, for which measurements were made [14]. A temperature-
dependent relaxation time spectrum near the Curie temperatureTm is presented in the form
of a 3D surface diagram in figure 5. These are not quantitative results, so we do not give
the actual values ofg(1/ω, T ) in figure 5.

It is commonly agreed that all relaxors are highly inhomogeneous materials. Smolenski
and Agranovskaya [15] originally proposed that underlying the relaxor behaviour was
chemical inhomogeneity at cation sites, giving rise to a DPT. Chenet al [16] found evidence
for short-range chemical order at the nanoscale level using transmission electron microscopy
(TEM). Cross [3] proposed that these nanometre-scale clusters are dynamical in nature, with
the dipole moment thermally fluctuating between equivalent directions. In the absence of
interactions between regions, this model would be analogous to superparamagnetism [17].
It has been suggested that the local polar clusters existing in relaxor ferroelectrics give
rise to analogous superparaelectric properties [3]. In an ideal superparaelectric, the clusters
are independent, and the dipoles of a cluster can only move individually; the frequency
dependence is governed by the Debye relationship. At high temperatureT > Tm, the
clusters behave more ideally, and the ferroelectric nature is retained. On the other hand, with
decreasing temperature the thermal activation energy for polarization fluctuation increases
[13]. The orientation or polarization fluctuation of the dipoles of clusters influences the
position of adjacent cations as well as the polarization of adjacent regions, and it has
been proved that the correlation lengthλ increases with decreasing temperature [18]. We
believe that this correlation interacts via dipole and dipole-induced reactions with dipoles.
This results in polarization-induced regions, in which the dipoles are randomly orientated.
Thus it appears that the polar regions grow as the temperature is reduced [2]. Because of
the randomness of the orientation of the new growing dipoles, they manifest polar glassy
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behaviour. At the same time, the correlation between the superparaelectric clusters becomes
stronger, and the degree of DR behaviour is reduced. Equation (8) and figure 2 show this
clearly. At the lowest measurement frequency, the glassy behaviour is dipole induced, while
at high frequency the Debye response comes from the free dipoles of polar clusters, and for
intermediate frequencies it is a superposition of coexisting DR and decayed GR responses.

When the temperature is decreased, the dipole-induced glassy regions become bigger
and the correlation length of the superparaelectric clusters becomes longer. The correlation
of the clusters restricts the dipole movement. The dipoles of the clusters become randomly
oriented in a glassy state, as a result of free-movement DR behaviour. Thus the lower
the temperature, the wider the distribution of relaxation times (see figure 5). When the
temperature reachesTrn, the temperature at which the phase transition from the relaxor to
the normal ferroelectric state takes place [19], there is a strong global broadening of the
relaxation time spectrum. At this temperature, because of the coupling of randomly oriented
dipoles with each other and the effect of electrostrictive strain fields, the stability of the
high-symmetry structure is destroyed [20]. The configuration of the rhombohedral phase—
having lower free energy—now forms. This is the so-called spontaneous transformation
from a relaxor to a normal ferroelectric state [19].

The new simple dielectric relaxation relationshipε′′ = A0e−ω/ω0ε′′glass+ ε′′Debye is in
good agreement with the experimentally measured high- and low-frequency values ofε′′. In
relaxor ferroelectrics there are various regions, which exhibit different relaxation responses.
Free dipoles of superparaelectric clusters give the peak of DR in the high-frequency stage.
Dipole-induced coupling with other dipoles leads to a polar glassy state with a wide spectrum
of relaxation times for the low-frequency range, and the GR effect decays exponentially with
increasing frequency. The coexistence of theses dipoles makes them link up with each other
in the intermediate-frequency range in the plot ofε′′ versusω (figure 2). With decreasing
temperature, strong coupling of the various dipoles leads to the structural phase transition
from the relaxor to the normal ferroelectric state taking place, at the temperatureTrn.

References

[1] Noblanc O, Gaucher P and Calvarin G 1996J. Appl. Phys.79 4291
[2] Burns G and Dacol F H 1983Phys. Rev.B 28 2527

Burns G and Dacol F H 1983Solid State Commun.48 853
[3] Cross L E 1987Ferroelectrics76 241
[4] Bidault O, Licheron M, Husson E and Morell A 1996J. Phys.: Condens. Matter8 8017
[5] Elissalde C, Ravez J and Gaucher P 1993Mater. Sci. Eng.B 20 318
[6] Colla E V, Koroleva E Y, Okuneva N M and Vakhrushev S B 1992J. Phys.: Condens. Matter4 3671
[7] Guo H K, Tang X G, Zhang J X, Shan S W, Wu M M and Luo Y J 1998 submitted
[8] Coelho R 1979Physics of Dielectrics for the Engineer(Amsterdam: Elsevier) p 83
[9] Tagantsev A K 1994 Phys. Rev. Lett.72 1100

[10] Courtens E 1984Phys. Rev. Lett.52 69
Courtens E 1986Phys. Rev.B 33 2975

[11] Lundgren L, Svedlindh P and Beckman O 1981J. Magn. Magn. Mater.25 33
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